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What is the thermal conductivity limit of silicon
germanium alloys?†

Yongjin Lee,‡ Alexander J. Pak‡ and Gyeong S. Hwang*

The lowest possible thermal conductivity of silicon–germanium

(SiGe) bulk alloys achievable through alloy scattering, or the so-called

alloy limit, is important to identify for thermoelectric applications.

However, this limit remains a subject of contention as both

experimentally-reported and theoretically-predicted values tend

to be widely scattered and inconclusive. In this work, we present

a possible explanation for these discrepancies by demonstrating

that the thermal conductivity can vary significantly depending on

the degree of randomness in the spatial arrangement of the con-

stituent atoms. Our study suggests that the available experimental

data, obtained from alloy samples synthesized using ball-milling

techniques, and previous first-principles calculations, restricted by

small supercell sizes, may not have accessed the alloy limit. We find

that low-frequency anharmonic phonon modes can persist unless

the spatial distribution of Si and Ge atoms is completely random at

the atomic scale, in which case the lowest possible thermal con-

ductivity may be achieved. Our theoretical analysis predicts that the

alloy limit of SiGe could be around 1–2 W m�1 K�1 with an optimal

composition around 25 at% Ge, which is substantially lower than

previously reported values from experiments and first-principles

calculations.

I. Introduction

Silicon–germanium (SiGe) alloys are promising candidate materials
for thermoelectric (TE) energy conversion. The main reason is their
low thermal conductivity (k), due to significant phonon scattering
by alloying (or so-called alloy scattering), as the TE efficiency is
inversely proportional to k. Good TE materials must have a low k
and excellent electronic transport properties, as characterized
by the dimensionless figure of merit ZT (=S2sT/k, where S is the

Seebeck coefficient, s is the electrical conductivity, and T is the
absolute temperature). Theoretical studies have identified that
alloy scattering in SiGe is mainly induced by mass disorder
among constituent atoms,1,2 a type of intrinsic scattering. As a
result, experimental efforts have attempted to facilitate further
reduction of k by incorporating extrinsic scattering through
nanostructuring.3–7 However, an understanding of the conditions
that maximize the mass disorder effect should be undertaken to
find the corresponding lowest k of SiGe, or the so-called alloy limit.

Previous experimentally reported values for the alloy limit of
SiGe have been inconclusive. For instance, the k of Si0.8Ge0.2

has been reported to range from 5 to 15 W m�1 K�1.8–13 Also,
while various theoretical methods have been successfully
employed to understand the underlying mechanisms of heat
transport in SiGe alloys,1,14–19 the large variation of predicted
thermal conductivities among different methods underscores
the necessity to assess the reliability of these various computational
conditions. For instance, solutions to the Boltzmann transport
equation using the single-mode relaxation time approximation
(BTE-RTA)1,14 and virtual crystal approximation15 based off of
density functional theory (DFT) calculations and molecular
dynamics (MD) calculations16–19 give significantly different
values for k of SiGe even at the same alloy composition (e.g.,
the k of Si0.8Ge0.2 can range between 2 and 10 W m�1 K�1).

Meanwhile in our recent study,17 it was shown that the
strength of alloy scattering is significantly affected by atomic
arrangement even at the same alloy composition. Noting that
experimentally measured samples were mostly obtained via
mechanical alloying (ball milling) of Si and Ge chunks, the
prepared alloys may not be completely disordered and can
contain a certain degree of ordering. Hence, the possible
differences in atomic arrangements due to preparation condi-
tions may explain the significant variation in k from sample to
sample. In a similar fashion, the discrepancies in k for different
theoretical methods might originate from the atomic arrange-
ments considered within MD and DFT simulations. It would
therefore be instructive to explore the sensitivity of predicted k
values to differences in the atomic arrangement of a given alloy
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composition within similar supercell sizes. Here, the chosen
supercell size should be large enough to fully capture long-range
phonon modes in order to correctly predict the k of SiGe alloys.

One way to characterize the differences in the atomic
arrangement of a nearly random alloy is by the length-scale of
possible periodicity, or so-called quasi-periodicity. In extreme
cases, the alloy could be described by the perpetual repetition of
a smaller and truly random alloy (i.e., a super-lattice), which may
be considered the ‘‘unit cell’’ and is defined by its size.

In this work, we investigate the limits of k suppression
within SiGe alloys through analysis of the sensitivity between
k and the extent of quasi-periodicity. First, the variations of k
according to the size of the random alloy unit cell are investi-
gated using classical molecular dynamics for a wide range of
alloy compositions; k can be separated into lattice and electronic
contributions in semiconductors, but the latter is insignificant
in (undoped or lightly doped) SiGe alloys12 and thus ignored in
this study. Then, mode-specific phonon contributions to k are
computed and analyzed using time-domain normal mode
analysis. Our analysis reveals that k is strongly affected by
atomic-scale randomness and only converges to a minimum
value in the absence of quasi-periodicity throughout the lattice,
thereby allowing anharmonic scattering of low-frequency
(i.e., long-range) phonon modes.

II. Results and discussion

To tune the quasi-periodicity of the SiGe alloys (with h100i
orientation in x, y, and z), the size of the random alloy unit cell
(N, corresponding to 23N atoms) was varied as N = 1 (8 atoms),
2 (64 atoms), 3 (512 atoms), 4 (4096 atoms), and 5 (32 768 atoms).
Within each unit cell, Si and Ge atoms were randomly distributed
using 12.5, 25, 50, and 87.5 at% Ge content. As depicted in Fig. 1,
supercells were then constructed from the repetition of the unit
cell (when N o 5) such that all samples contained 32 768 atoms
in a super-lattice configuration. The interatomic interactions
were described using the Stillinger–Weber (SW) potential function
with parameters that were re-optimized using a force-matching
method20 based on DFT calculations. All other computational
details are provided in the ESI.†

Fig. 2 summarizes the computed variation of k with N (=23N

atoms) for Si1�xGex (x = 0.125, 0.25, 0.5, and 0.875) obtained
from our EMD simulations using LAMMPS.21 Our results con-
firm the following experimentally observed trends8–11 (refer to
open star symbols in Fig. 2):
� When x o 0.2 (or x 4 0.8), k rapidly drops as the Ge

content increases (decreases)
� For 0.2 o x o 0.8, k shows insignificant variation with x
� The minimum value of k occurs around x = 0.2
Interestingly, the sensitivity of k to N is clearly exhibited in

Fig. 2. Specifically, k monotonically decreases as N increases
and converges beyond N = 4 (inset of Fig. 2). When x = 0.25, for
instance, the k at N = 1 (23.26 W m�1 K�1) is predicted to be about
15 times greater than the converged value of 1.53 W m�1 K�1 at
N = 4. In fact, this computed k is found to be significantly lower

than previous experimentally reported values.8–11 However, we
do find that this converged value of k is nearly identical to that
predicted from our recent NEMD simulations which contained
up to 64 000 randomly distributed Si/Ge atoms.17 This suggests
that the prediction of k can be insensitive to the choice of MD
technique as long as the system size is sufficiently large.

In Fig. 2, we also compare the predicted k from ab initio BTE-
RTA1 to our EMD simulations and demonstrate a remarkably
close agreement when N = 2; for example at x = 0.5, k computed
by Garg et al. from BTE-RTA is about 7 W m�1 K�1 (using
an explicit random lattice) which is similar to our calculated
k = 8.93 W m�1 K�1. In their work, interatomic force constants
up to third-order were extracted from DFPT calculations using
64-512 atom supercells, which were then used to estimate the
anharmonic scattering rates. While Garg et al. demonstrated
that the scattering rates of the phonon modes below 2 THz
required explicitly random atomic arrangements (i.e., the so-called
virtual crystal approximation was insufficient to emulate these
scattering events), they found that this system size achieved
convergence.1 In this work, we instead observe continuous

Fig. 1 Representative supercell structures of SiGe alloys with three dimensional
periodic boundary conditions and 25 at% Ge content. The size of the repeating
unit cell N (with 23N) varies from 1 to 5. When N o 5, the unit cell is repeated
such that all structures contain 32768 atoms. For different alloy compositions,
lattice constants were adjusted according to Vegard’s law.

Fig. 2 Calculated thermal conductivities (k) of Si1�xGex (x = 0.125, 0.25,
0.5, and 0.875) for supercell size N = 1, 2, 3, 4, and 5 (N in 23N atoms). Open
gray squares17 and orange triangles1 represent previous NEMD and DFT
results, respectively. Open star symbols represent experimental results.9,11

The inset shows the normalized thermal conductivities (k/kbulk) of Si1�xGex

as a function of N; the black dashed line indicates k = kbulk.
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suppression of k beyond N = 2. To investigate the influence of N
further, we estimate the individual phonon mode contributions
to thermal transport as discussed next.

We solve for the individual mode contributions to k using
the BTE-RTA method based on time-domain normal mode
analysis (TDNMA) extracted from a combination of MD trajec-
tories and anharmonic lattice dynamics, which can account for
full anharmonicity (see the ESI†). Here, we consider the
Si0.5Ge0.5 alloy with N up to 4; as k essentially converges beyond
N = 4, the computationally expensive N = 5 case is not con-
sidered such that all systems are limited to 4096 atoms. For
comparison, we also include the zinc-blende alloy as this
structure can be considered as an extreme case of a completely
ordered alloy, which we find to have k = 58.16� 6.41 W m�1 K�1;
the importance of the atomic arrangement can be noted by
comparison to zinc-blende GaN which has a large k E 100–
250 W m�1 K�1 despite the mass difference between the two
constituent atoms.22 Fig. 3 depicts the estimated accumulation
of k as contributed by phonon modes of different frequencies o.
First, it is clear that the o beyond which the accumulated k
saturates tends to decrease with increasingly disordered alloys
(i.e., from the ZB to N = 4 cases). This demonstrates that the
range of high-frequency phonon modes that are completed
scattered tends to broaden as the atomic arrangement disorder
increases, i.e., as the regularity of the Si–Ge sub-lattice ordering
is disrupted.

To account for the initial suppression of k from the ZB to
N = 1 case, we refer to the computed phonon group velocities
(vg) and mean free paths (LMFP) as shown in Fig. 4. A frequency
gap is observed between 6.5 and 9.5 THz in the ZB case. The
presence of the frequency gap restricts possible phonon scattering
due to the necessity for energy and momentum conservation,23,24

which has been similarly observed in other zinc-blende alloys
including GaN and AlSb.25,26 The existence of the frequency gap
can be explained by a simple linear chain model.27 For example,
the diamond lattice can be described as a combination of

diatomic linear chains having two inequivalent lattice sites, such
as Si and Ge, and two phonon branches (lower and upper). The
highest frequency mode (nH) of the lower branches, associated
with Si, and lowest frequency mode (nL) of the upper branches,
associated with Ge, occur at the Brillouin zone boundaries. Due
to the mass difference between Si and Ge, nH and nL have
different frequencies and thereby results in a frequency gap.
On the other hand, in the N = 1 case, the two lattice sites are
randomly occupied by either Si or Ge atoms. This therefore
allows various eigenmodes to exist within the frequency gap,
ultimately leading to k suppression as a result of additional
phonon scattering.

In Fig. 3, when N 4 1 our calculations find that the phonon
modes below 2 THz are the dominant heat carriers. Therefore,
as N increases, the reduction in k can be attributed to the
scattering of these low-frequency modes. Interestingly, the fact
that our results predict further scattering of low-frequency
phonons compared to that of ref. 1 seem to suggest that higher
order anharmonics may be necessary to describe the low-
frequency phonon behavior. However, we also find that our
BTE-RTA results tend to overestimate (underestimate) k when
N 4 2 (N o 2) compared to our EMD predictions. Given that
the thermal conductivity of each mode is proportional to the
mode-specific heat capacities, vg, and LMFP, we can qualitatively
assess the accuracy of each. In general, we can assume that the
least likely source of error is vg (Fig. S1 and S2 in the ESI†) as
this depends upon the stiffness of the Si–Si/Ge–Ge/Si–Ge
bonds, which can be well-described by our parameterization
of the SW force-field using the force-matching method. One
possible source of error is our use of the quantum-harmonic
heat capacity; previous studies have noted that the deviation in
heat capacity between quantum-harmonic and classical-
harmonic formalisms diminishes close to the Debye tempera-
ture while a significant deviation is seen with respect to the
classical-anharmonic heat capacity.28 However, we believe that
the largest source of error is likely in the estimation of LMFP

Fig. 3 Comparison of the accumulated thermal conductivity (k) with respect
to phonon frequency (o) for Si0.5Ge0.5 with the listed atomic configurations
using the BTE-RTA method based on time-domain normal mode analysis from
MD trajectories. The predicted k values from EMD calculations for each
configuration are depicted by their respective colored arrows.

Fig. 4 Comparison of the phonon group velocity (vg) and mean free path
(LMFP) for Si0.5Ge0.5 in zinc-blende (ZB), N = 2, and N = 4 configurations as a
function of frequency (o). The black, blue and red arrows indicate half the
length of the simulation domain in the ZB, N = 2, and N = 4 cases, respectively.
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(Fig. S1 and S2, ESI†) under the single-mode relaxation time
approximation. The biggest drawback of this approximation is
that collective or many-body scattering interactions between
phonons are not explicitly accounted for, which may be increasingly
important for long-range (i.e., low-frequency) coupled modes.
Furthermore, our TDNMA calculations may exacerbate this
problem due to limitations in both our simulated system size
and the description of many-body interactions in the force-
field; both of these factors can allow long-range coupling of
atomic vibrations to persist. Nonetheless, the TDNMA analysis
demonstrates qualitatively that the anharmonic contribution to
heat transport by the low-frequency phonon modes can be
overestimated if quasi-periodicity exists (i.e., N is too small).
These findings highlight that the presence of microsegregation
and/or quasi-periodicity (i.e., super-lattice) in SiGe alloys can
prevent the observation of the alloy-limit of k.

III. Conclusions

In summary, we investigated the lowest possible thermal con-
ductivity (k) of SiGe alloys, or the so-called alloy limit, by
assessing the sensitivity of k to the randomness of the constitu-
ent atom arrangement throughout the alloy; this direction was
motivated by our previous study17 that demonstrated the sensi-
tivity of k at a given SiGe composition to the presence of locally
segregated Si or Ge domains (or so-called microsegregation). In
this work, we tuned the randomness by introducing quasi-
periodicity through the construction of random-alloy super-
lattices with periodicity governed by the size of the unit cell
used to describe the random atomic arrangement. Our molecular
dynamics simulations showed that the predicted k is inversely
related to this unit cell size and converges to a minimum around
1–2 W m�1 K�1 in the Si0.75Ge0.25 alloy. Detailed phonon analysis
suggested that the removal of quasi-periodicity is necessary to
allow highly anharmonic scattering of low-frequency (o2 THz)
phonon modes, and thereby the lowest k.

This study highlights the connection between k and the
arrangement of atoms at the nanoscale, which suggests two
important consideration for future theoretical and experimental
work. First, we note that previous first-principles calculations to
study random alloys may have inadvertently included quasi-
periodicity owing to limited supercell sizes and computational
power. Therefore, more accurate first-principles calculations may
require much larger supercells in order to predict the scattering of
low-frequency phonon modes. In addition, it may be necessary to
capture higher-order anharmonicity either through the inclusion of
higher-order terms in lattice dynamics calculations or (ideally)
through ab initio molecular dynamics simulations.

Second, we note that mechanical alloying (e.g., high-energy
ball milling) of Si and Ge powders is the most common
approach to fabricate SiGe alloys. Depending on the processing
conditions, it is possible that microsegregation occurs through-
out the alloy. For example, Si or Ge particles can remain
segregated into distinct domains, especially if thermal treat-
ment does not induce sufficient atomic diffusion to create a

homogeneously random alloy. Therefore, this work provides
motivation to advance current fabrication techniques for SiGe
alloys in order to realize the alloy-limit of k, which is important
for thermoelectric applications.
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